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1. INTRODUCTION 

In the first year of this study we showed that the dyadic transform was not sufficient for our case mass 
of detection [1]. Last year, we developed multi-scale adaptive histogram equahzation (MSAHE) that 
achieved a global contrast enhancement by adjusting contrast locally through reassigning a central 
pixel the value through a local histogram equalization mapping function. This past six months we 
have implemented a level set method of segmentation for the detection of masses within a multi-scale 
expansion. This report provides an overview of this method and describes progress to date. Since this 
is a final report, we will summarize previous accomphshments and status of the project overall, at the 
end. 

Traditional methods of segmentation, such as pixel-based clustering, region growing, and edge 
detection, requires additional pre-processing and post-processing as well as a considerable amounts of 
expert intervention or information of the objects of interest. Furthermore the subsequent analysis of 
segmented objects is hampered by primitive, pixel or voxel level representations fi-om region-based 
segmentation [1]. 

Deformable models, on the other hand, provide an expUcit representation of the boundary and the 
shape of an object. They combine several desirable features such as inherent connectivity and 
smoothness, which coimteract noise and boundary irregularities, as well as the ability to incorporate 
knowledge about the object of interest [1,3] [4]. However, parametric deformable models have two 
main limitations. First, in situations where the initial model and desired object boundary differ greatly 
in size and shape, the model must be re-parameterized dynamically to faithfully recover the object 
boundary. The second limitation is that it has difficulty dealing with topological adaptation such as 
splitting or merging model parts, a useful property for recovering either multiple objects or an object 
with unknown topology. This difficulty is caused by the fact that a new parameterization must be 
constructed whenever the topology change occurs, which requires sophisticated schemes [5, 6]. 

In the body of this report an alternative approach of coping with weaknesses in existing methods of 
segmentation of masses is described. 

2. BODY 

DETECION OF MASSES VIA EVOLUTION OF LEVEL SET BOUDARIES 

In existing level-set methods, the gradient information is used as a stopping criterion for curve 
evolution, and also provides the attracting force to the zero level-set fi-om the target boundary. 
However, in a discrete implementation, the gradient-based term can never fully stop the level-set 
evolution even for ideal edges, leakage is often unavoidable. Also the effective distance of the 
attracting force and blurring of edges become a trade-off in choosing the shape and support of the 
smoothing filter. The proposed homogeneity measurement provides easier and more robust edge 
estimation, and the possibility of fully stopping the level-set evolution. The homogeneity term 
decreases firom a homogenous region to the boundary, which dramatically increases the effective 



distance of the attracting force and also provides an additional measurement of the overall 
approximation to the target mass boundary. Therefore, it provides a rehable criterion of adaptively 
changing the advent speed. By using this term, the leakage problem was avoided effectively in most 
cases compared to traditional level-set methods. The computation of the homogeneity operator is fast 
and can be done within seconds on a PC workstation. 

Curvature evolution and Level set 

Level set segmentation [7, 8], also referred as geometric deformable models, provides an elegant 
solution to address the primary limitations of parametric deformable models. In the 2D case, the 
boundary of an object is implicitly represented as the zero-level set of a time dependent 2D function, 
which is usually called the level set function. A useful property of this approach is that the level set 
function remains a valid function while the embedded curve (the zero level set) can change its 
topology. 

The evolution equation for the level set function ^(x,y,t)takes on the following formula [9]: 

^ + F\W^\ = 0 (1) 

The evolution of the level set function was determined by the speed function F. As an example, 
imagine that given an initial closed curve that is evolving under three simultaneous motions. First, it is 
expanding with a constant speed in its normal direction; second, it is moving with a speed proportional 
to its curvature; third, it is being passively advected by an imderlying velocity field whose direction 
and strength depend on position and time, but not on the fi-ont itself This entire motion can then be 
written in terms of the speed function as an explicit level set scheme: 

F = F    +F    +F (2) prop curv adv ^   ■> 

where F^^^^ = FQ is the propagation expansion speed, F^^ = -SKIS the dependence of the speed on the 

curvature K, and F^^ = U(x,y,tyn is the advection speed, where nis the normal to the front. The 
PDE in (1) can be solved with entropy-satisfying schemes given the speed function. 

A small modification version of (2) gives the general formula for level set segmentation: 

^,+gj(l-SK)\W(/,\-j3VP-V^ = 0 (3) 

In the term 1-SK , the uniform expansion with speed 1 corresponds to the inflation force used by 
Cohen [10]. The diffusive term f/c smoothes out the high curvature regions and has the same 
regularizing effect as the internal deformation energy term in thin-plate-membrane splines [2]. The 
term g^was computed from the image data, and provide a halting criterion for the speed function, the 

value of gj should be between 0 and 1, and ideally, with 0 on the boundary and 1 within the 
homogeneous region (either within or outside the object). Typically, it can be estimated by the 
gradient: 

l + |V(G^*/(x,j))| 

where the expression G^*I denotes the image convolved with a Gaussian smoothing filter whose 

characteristic width is a. The term V(G^ *I(x,y)) is essentially zero except where the image gradient 

changes rapidly, in which case the value becomes large. Thus, gj is close to unity away from 



boundaries and drops to zero near sharp changes in the image gradient. These changes presumably 
correspond to the edges of the desired shape. In other words, the first term in (3) anticipates steep 
drops in the image gradient, and retards the evolving front from passing out of the desired region. The 
second term in (3) is a force which attracts the surface towards the boundary, which has a stabilizing 
effect, especially when there is a large variation in the image gradient value. This term denotes the 
projection of an attractive force vector on the surface normal. This force, introduced in [11], is realized 
as the gradient of a potential field. Here: 

P = -|V(G,*/)| (5) 

attracts the surface to the edges in the image, the coefficient p controls the strength of this attraction. 

Apparently, both terms depend on the edge map V(G^ */), and the quality of this edge estimation 
determines performance of the segmentation. 

''Scale Map" based on homogeneity measurement 

"Scale" is a fimdamental, well-estabUshed concept in image processing [12, 13]. The premise behind 
this concept is to consider the local size of the object in carrying out whatever local operations that is 
to be carried out on the image. It has previously been used as a metric of local homogeneity [13]. 

"Object Scale" in an image C at any pixel c was defined as the radius r(c) of the largest hyper ball 
centered at c which lies entirely in the object region [14]. 

A hyper ball B^{c) centered at pixel c is a collection of pixels around c, i.e. B^ic) = |e e C | ||c -e|| < r|. 

For a ball B,^{c) of any radius k centered at c, a fraction function FO^{c) was defined, which indicates 
whether the fraction of the ball boundary is sufficiently homogeneous to the inside region of the ball: 

X....c.)-...,.)^(|/(^)-/(^)|) FO,(c) = (6) 
\B,(c)-Bac)\ 

where |5;t(^)~^it-i(<^)|is the number of pixels in Bi^(c)-B^_^(c)sa\d Wis the homogeneity fimction, 
which measures the similarity of two pixels based on their pixel value in the image  ffx). Some 
typically used homogeneity functions for this sake are illusfrated in Figure 1. 

W(x) W(x) 

(a) (b) (c) 

Figure 1: Examples of homogeneity functions for computing the fraction function in (6). 



The mathematical formulas for the homogeneity functions in Figure 1 are: 

'1, 0<x<a 
(a)r(jc) = - 

(h)W(x) = 

0,     x>a 

1, 
b-x 
b-a 

0, 

0<x<a 
, a<x<b 

x>b 
(7) 

By setting a fixed thresholdO<f <1, the scale map at a pixel c can be computed by the following 
pseudo-code: 

begin 
k=l; 
while FO^(c)>t do 

k=k+l; 
endwhile 
r(c)=k; 

end 

Methodology for computing an edge map based on homogeneity metrics 

The scale map described above provides a robust homogeneity measurement by incorporating a 

tolerance level t. For example, if we use ? = 7^,ina3x3 neighborhood of a pixel c in a 2D scene, we 

allow one out of the eight neighboring pixels to belong to a different object (to account for noise) but 
still consider the neighborhood to be entirely within the same object. This actually provides a 
mechanism of denoising within the homogeneity measurement. 

An edge was defined as a region of an image in which the pixel value changes significantly over a 
short distance [15]. Therefore the edge represents a region that has significant lower homogeneity. 
Thus a homogeneity measurement certainly provides edge information within an image. 

Figure 2 shows the "scale map" computed by the algorithm above using different parameters. 



(a) (b) 
Figure 2: scale map of breast radiograph image, (a) original mammogram (256 gray levels). 
(b) scale map computed with parameter, k^ =500, t=0.8. 

Here we use equation 7(c) as the homogeneity function for computation. The two parameters for 
computing the scale map are the shape parameter of the homogeneity function (A:), and the tolerance 
value for homogeneity measurement {t). Parameter k determines how much variation in the pixel value 
is tolerated in terms of homogeneity. Paramter t, as discussed previously, determines how much noise 
we want to ignore. Figure 2(b) shows the appearance of an edge map with lower values on the 
boundary and higher values on the homogeneous regions. As shown in Figure 3, when we scale the 
pixel values of this edge map to the interval [0,1], it can be used effectively as an image-based term for 
level set segmentation of masses. 

Level set segmentation using a homogeneity edge map 
The level set evolution function (3), without the attracting speed term, can be written as: 

(t>,+gj\y(l>\-gjSK\V(l)\ = 0, (8) 
where the first term in (8) provide the expansion speed along the normal direction of the curve, the 
magnitude is gj, therefore, in the non-boundary region, we want the edge map gj to be as large as 
possible, so that the curve evolution can converge to the real boundary quickly. Ideally, gj will be zero 
on the estimated boundary, so that when the curve reaches it, the evolution function becomes^, = 0, 
and reaches equilibrium. But since the gradient V(G^*/) will never be infinity in the discrete 
implementation, gj will never become exactly zero. Thus care and rehable methods are needed to stop 
the level set evolution when it reaches the estimated boundary. 

In this research, we used the edge map defined by a homogeneity metric, where the value of the edge 
map can be zero on a sharp boundary. This provided a more rehable stopping criterion than traditional 
gradient operators alone. However, because of noise tolerance, a weak boundary could be non-zero. 
Also, missing boundaries may occur due to the angle of an X-ray projection, therefore, boundary 
leakage may happen if the boundary definition in the original image is not perfectly clear. This in part 
motivated our development of the MSAHE algorithm described in the beginning sections in this report. 
The attraction term (5) introduced in [11] is used to pull back the curve when it passes a boundary. We 



added an adaptive indication term that shuts down the expansion speed when the curve became close to 
the estimated boundary. The evolution function we used was: 

^,+g^-^-|V^|-£:x:|V^|-ySVP.V^ = 0. (9) 

The reason why we took out gj from the second term is that when the curve approaches the boundary, 
the value of g^ became very small, and therefore the smoothing effect was eliminated. When using the 
attracting term, the ciirve always appeared noisy due to imperfect boundaries in the edge map. This 
strategy is analogous to those used in parametric deformable models that always keep a constant 
weighted elastic internal force. 
Sis an global indication ftmction such that when the zero level set of ^ is close enough to the 
estimated boundary, ^ = 0 and otherwise S = 1. Looking at the computation of the homogeneity map, 
intuitively the pixel value in the edge map is decreasing from the homogeneous region to the boxmdary, 
and reaches the minimum at the boimdary. Therefore the pixel value of the edge map actually gives the 
information of how close a certain pixel is to the boimdary. By averaging the values in the edge map 
over the pixels that represent the zero level set, or finding the maximum value, we can ascertain how 
close the whole curve is to the target boundary. A threshold is chosen so that when this value is smaller 
than some threshold <5 = 0, and otherwise ^ = 1. 



(c) 

Figure 3: Sample mass detection by enhancement within a multi-scale expansion: 
(a) original image (b) enhanced image (c) segmentation (shown in red boundaries) based on (b). 
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3. KEY RESEARH ACCOMPLISHMENTS 

During the past six months of the project we incorporated an expansion based method of detecting 
masses in digital radiographs. 

• We implemented a level-set method of segmentation that made use of a local homogeneity 
operator for the detection of subtle masses in digital mammography. 

This expansion based method is integrated into our previously described multi-scale expansion 
framework and will be tested using a local database of digital mammograms as part of a 
planned validation study. 

In our proposal we made the conjecture that existing methods of analysis computed (efficiently) on 
dyadic scales were not sufficient for the detection of masses: a lesion may be too blurry at one scale, 
and too precise at the next finer (dyadic) scale. In the first part of this study, we answer the question "Is 
it sufficient to work with dyadic scales, or is there an absolute need to compute coefficients between 
the scales?" Indeed, during the course of this investigation we have clearly shown that there is a 
significant advantage in the capturing the morphology of arbitrary sized masses when using finer 
"grained" expansions. 

Throughout this study we have avoided development of not "reinventing the wheel" whenever 
possible. We choose to use or modify existing libraries and programs readily available within the 
mathematical community. For example, we modified vmder Matlab several existing LastWave 
algorithms, including the Discrete Wavelet Transform in two dimensions without downsampling, using 
the Algorithme a Trous algorithm. An ancillary benefit to this approach is that when this code is made 
available to the research community it will be easy to use having been built upon "freeware" and 
commercially available programming environments. All of the programs for computing the expansion 
and detection algorithms (written in "C" and/or MatLab code ) during this the course of the study are 
available upon request through our web site: bil.bme.columbia.edu". 

We compared in one dimension the CWT and the DWT in order to show a proof of concept concerning 
any advantage of pursuing refinement of scale. We processed phantom masses, and ID intensity 
profiles of real masses mammograms to evaluate feasibility. In order to identify the best scale, we 
evaluated the use of maxima of the coefficients and a correlated model using three masses of different 
size. We then evaluated the shape of the "Mexican hat" for suitability in a matched filtering detection 
paradigm. During the third year we applied enhancement algorithms as a preprocessing step and 
introduced the notion of "voices" which allowed us to compute representations of masses in between 
octaves of the expansion. 

4. REPORTABLE OUTCOMES 

The following publications  are presented as reportable outcomes  of the investigation.     For 
convenience, we have included selected copies of these manuscripts along with this report. 
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Publications: 
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5. CONCLUSIONS 

The major problem of level set segmentation is boundary leakage when weak boundaries or occluded 
parts of a mass boundary are evident, hi this research, we kept the expansion term initially for 
"pushing" the model towards the boundary, and therefore had no need for a restricted initialization. 
When the expansion term was shut down, we observed that it prevented boundary leakage. 

The definition of our homogeneity measurement did not include any prior knowledge of the 
dimensions, and therefore can be easily extended to higher dimensions and it is computationally 
efficient because no filtering/convolution is involved, hi addition, to collect all the pixels around the 
zero level set needed to compute the indication fimction S was a byproduct of the procedure for 
constructing the extension speed when iterating the level set function. Therefore this test can be done 
whenever the construction of the extension speed is performed without extra computation. 

Since this research has presented a new edge map, other methods based on speed terms driven by edge 
maps [16, 20] can be designed to achieve more rehable level set evolution and segmentation. In the 
fiiture, extensions to higher dimensional datasets and building other desirable speed terms based on 
"hyper edge maps" and other information of the underlining image are possible. 

Overall Summary 

The idea of this "Idea Award" was to detect subtle masses in mammograms by tuning the central 
firequency and width of a basis function that generates overcomplete expansions. By modeling the 
shape of a mass through this flexibility we hoped to detect small and subtle masses m dense breasts 
and improve the chances of early detection in screening mammography. In the first part of our 
investigation, we evaluated existing tools to compute overcomplete expansions of multiscale signals. 
We compared in one dimension the CWT and the DWT for a proof of concept concerning any 
advantage of pursuing refinement of scale. We processed phantom masses, and ID intensity profiles 
of real masses mammograms to evaluate feasibility. In order to identify the best scale, we evaluated 
the use of maxima singularities and a correlated model using three masses of different size. Our study 
answered the question of weather of not dyadic scales were sufficient to detect masses in a dense 
mammograms. We clearly showed that reasonable approximations of mass shapes could be obtained 
through overcomplete expansions that computed voices between the traditional dyadic scales. 

Our study of one dimension cases answered the question of weather of not dyadic scales were 
sufficient to detect masses in a dense mammograms. We showed that reasonable approximations of 
mass shapes could be obtained through overcomplete expansions of a continuous wavelet transform 
that computed voices between the traditional dyadic scales. 

We observed in mathematical phantoms and real masses that a correlation method (between a model of 
a mass and the values of the computed coefficients) gave approximately the same results when 
compared to the maxima method (maximum of the coefficients at each scale). We developed a simple 
scheme to detect masses using these representations. This method based on geometiic properties of 
segmented masses within each expansion was shown to be remarkably stable. 
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DETECTION OF MASSES IN MAMMOGRAPHY THROUGH 
REDUNDANT EXPANSIONS OF SCALE 
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Breast Imaging Center, New York Presbyterian Hospital, Columbia Presbyterian Medical Center, 

New York, NY, USA 

ABSTRACT 

We show that dyadic scales may not be sufficient for the 
detection of masses in mammograms: a lesion may be too 
blurred on one scale, and then too fragmented at the next. 
In this paper, we report on the preliminary evidence of 
our study using a continuous wavelet transform in two 
dimensions with arbitrary positioning of a wavelet's 
center frequency channel tuned to the mass detection 
problem. Our goal is to detect masses in dense 
mammograms whose diameter is smaller than 1 cm. The 
aim is to be able to find the scale where the mass is best 
represented in terms of analysis. 

1. INTRODUCTION 

An initial study in one dimension helped us observe that 
dyadic scales are often not sufficient to detect a mass in a 
dense mammogram [3]. Below we show this by a 
continuous wavelet transform, which computes the 
decomposition on voices between traditional dyadic 
scales. 

2. METHODOLOGY 

2.1. Voices and octave 

It is possible to expand a signal more finely and compute 
scales between octaves of traditional dyadic expansions 
by voices [1]. A voice constitutes a subdivision of an 
octave. If we consider a wavelet mother y/, a family of 

wavelets y/„^{x)=^a^^y/{a^'"x-nb^) where ao is the 

dilatation parameter, bo is the translation parameter, 

(m, n) e Z^ are possible.   In the dyadic case, ao=2 and 
m 

t>o=l, y/^^(x) = 2^yAT'"x-n)-    Decomposing N voices 

per octave means creating N functions ^„ ;„ and 

computing the frame 

{¥m,n '• ('"»«) ^ "^^^V = 1,...,A''}.   Analyzing with N 

voices means finding N different frequency chaimels, 
which correspond to the N frequency localizations of 

i//,..., ■0'^ [2], all translated by the same step (Fig. lb). 

Such a lattice can be viewed as the superposition of N 
different lattices of the type shown in Fig. la, stretched 
by fixed amounts in frequency. For example a possible 

choice for tp   is ^«/^(x)=2 ^ ^^2 ^ x). 

If |ii''(^)|, which we assume to be even, peaks 

around ±0)^, then u^-' will be concentrated around 

-id 
±2  ^ <»o in the same way as in the dyadic case.  If 

■0 has two peaks in frequency at i^g, U^^(Q|then 

peaks at ±2*" ^^ which are two localization centers of 

The equation computing the scale for source 
given "octave", "current voice" and "number of voices" 

octave+ <^"-ent_voice 
IS scale = 2 number_wices  [3] 

Moreover, we adopt the following convention: 
the first octave (octave number zero) corresponds to the 

width between scales 1 + 2"™*^''-'"'''^^^ and 2. The 
dyadic scale of an octave is the last voice of the octave 
(scale = 2°''^^'^'). In Fig. 2, we consider a signal of 512 
points (2*). This means 9 octaves (octave 0 to octave 
8).      The   coarsest   scale   is   512,   the   finest   is 

) number  voices ^^2""™--—. For example, when we display a 
second voice of the fourth octave (four voices per 

2 

octave computed), we obtain the scale l'^'*, that is to 
say scale 23. 

2.2. One-dimensional experiment 

We applied programs from libraries in LastWave and 
Matlab, using a continuous wavelet transform and a 
discrete wavelet fransform.    LastWave is a wavelet 



signal and image-processing environment, written in C 
[4]. Wavelab is an extension of Matlab. For the CWT, 
we concentrated on the first and the second derivative of a 
gaussian function (Mexican Hat wavelet). We processed 
phantom signals with three masses of distinct sizes using 
gaussian additive noise. 

frcqiii 

• dv.idic scales 

k voices between netavcs 

!<-*.- 2/; 

hi,=l 

-N-i 

time 
•4  

, frequency 
A 

b„=l 

2b,i''2 

4-A 
4 

time 
M  

4 voices 
per octiive 

■2./. 

■■r. 

(a) (b) 
Fig. 1. The time-jfrequency lattice: (a) for the dyadic wavelet 

transform, \J'n,_„ is localized around 2"Vibo; ao=2 and we assume 
bo=l; (b) for a scheme with four voices, the different voice 
wavelets \p^,..., (^"are assumed to be dilatations of a single 

function ^^, il)i(^x) = 2  " tp(2  " x)- 

Ircqticncy 

D2.4  ^caleH 

scales 
9.5 to 16 

coarser scales 

Fig. 2. The time-frequency lattice for a scheme with four voices 
per octave, including the scale axis. 

We plotted two scan line profiles (Fig. 4) of a real 
mammogram (Fig. 3). 

Fig. 3. Real mass from a mammogram. The white lines 
show the locations of the extracted profiles corresponding 

to Fig. 4. 

section of a mammogramm without mass 

100 200 300 '    400 500 600 

section of a mammogramm with a mass 

100 200 500 600 

Fig. 4. ID sections of a real mammogram. 

As shown in Fig. 4, we added gaussian noise on the 
phantom mass so that tiie ID signal had approximately 
the same shape as a real mass. Fig. 5 shows this 
representation. 
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Fig. 5. Phantom signal with an added white gaussian noise of 
variance 0.1. 

Fig. 6 depicts the results obtained without 
downsampling. The signal was composed of masses 
with a white gaussian noise of variance 0.1. The 
wavelet was a Mexican Hat. 
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Fig. 6. Analysis by a DWT on a phantom with gaussian noise 
(var = 0.1). We show approximation and detail signals at 

scales 8 (left) and 16 (right). 



2.3. The 2D CWT 

We began the 2D study with phantom masses of white 
objects on a black background with the addition of white 
gaussian noise of variance 4. We applied a bias to the 
magnitude values to preserve the waveform shape and 
make the signal purely positive [5]. Next, we performed 
the analysis on a cancerous mass from a mammogram 
(Fig. 3). We show the biased unthresholded results in 
Fig. 7, and the thresholded values in Fig. 8. 

] 

Fig. 7. CWT_2D at octaves 4 to 6, four voices per octave. No 
thresholding on biased coefficients. 

1                     2                       3                       '^                    voices 

 \ \ \ \ ^=*  
5C3te 22.6 scale 26.9 

scale 381 scale 45.3 scale 538 

scale 761 scale 90,5 

Fig. 8. CWT_2D at octaves 4, Sand 6, four voices per octave. 
Coefficients are biased and thresholded among scales (10 for 

scale 38 to 20 for scale 128). 

2.4. Fractional Splines 

We have more recently focused on the Fractional Spline 
Wavelet Transform [6,7]. We have extended the 
implementation to two dimensions, which was described 
origmally by M. Unser and T. Blu [8]. We used 
orthonormal filters to compute the details (horizontal, 
vertical and diagonal) and the approximation coefficients 
of the image by applying the filters. 

H2{e"')=^f2 1 + e 
V    2    , 

G!(e''°)=e'-'"'//!(-e"'''°) 

where A" (z) is the autocorrelation filter of degree a . 

The transform is computed for a real mass 
along the scales for different values of the spline 
parameter a (Fig. 9). 

-0.4 -0.1 0.2 0.5 
-►      alpha 

Wi L   L 
scale 

Fig. 9. DWT in 2D at scale 4 and 8, for 4 values of a. 

As shown in Fig. 9, we do not always observe a good 
representation for different values of the parameter a. 
However, we clearly observe that the detection is better 
for a=0.2. The parameter of the spline is continuous 
(a>-0.5). Therefore, it is interesting to make the 
parameter vary in order to find the best basis, which 
suits well a given mass size. However the present 
transform is only computed at dyadic scales. With a 
continuous analysis, which would allow deconposition 
on voices between these scales, we may obtain a richer 
parameter space so as to identify a best basis for mass 
detection. 

3. Correlation Analysis 

Given the results in one dimension, we then 
implemented a 2D continuous wavelet transform. Our 
goal was to now find the most suitable scale to detect a 
mass of arbitrary size. To find the best scale, we 
displayed the maxima of the coefficients along scales, 
the third dimension giving the magnitude of the 
maxima at each scale. In addition, we plotted the 
correlation between the original mass and the 
coefficients of the CWT at each scale. We expected to 
find different optimal scales according to the size of a 
mass. We tested this by carrying out our algorithm on 
three different size masses. We first computed for each 
mass the CWT in 2D on 9 possible octaves (3 voices 
per octave). Then for each octave and scale we plotted 



the   maxima   of   the   coefficients   of   the   wavelet 
decomposition as shown in Fig. 10. 

■)       8       16     32     64      128  256 

Fig. 10. Evolution of the maxima of the cwt2d across scales. 

The positions of the maxima of the decomposition were at 
scales 40, 81 and 128 for small, medium and large masses 
respectively. 

Next, we performed the CWT in 2D on the same number 
of octaves and voices. For each scale we calculated the 
correlation between the original image without noise and 
the 2D CWT decomposition as shown in Fig. 11. 

Fig. 11. Correlation between the original image and the biased 
values of the decomposition. 

The positions of the maxima of the correlation were at 
scales 64, 102 and 161 for small, medium and large 
masses respectively. 

The most suitable scale using the method of the maxima 
evolution was not the same as the scale identified with 
correlation. Next, we attempted to find the best scale for 
a real mass. This time, the best scale to detect the real 
mass was the same for both methods (maxima evolution 
and correlation) at scale 161. We also considered a very 
noisy signal (variance 4), for robustness. We analyzed 
the maxima of the coefficients and the correlation for 
different noise settings. From these results we observed 
that both methods identified same scale values regardless 
of the amount of added noise. 

4. Multi-scale Adaptive Histogram Equalization 

Analog and digital mammography often contains 12 
bits or more of significant contrast information. 
Anatomical tissues may occupy significantly different 
dynamic ranges on display due to difference of X-ray 
attenuation. By comparison, the human visual system 
can only perceive less than 100 different gray levels 
[9]. Thus, contrast enhancement is usually needed for 
clinical readings. This section discusses one approach 
for contrast enhancement utilizing multi-scale analysis. 
Sub-band coefficients were modified by the method of 
adaptive histogram equalization. To achieve optimal 
contrast enhancement, the sizes of sub-regions were 
chosen with consideration to the support of the analysis 
filters. The enhanced images provided subtle details of 
tissues that are only visible with tedious 
contrast/brightness windowing methods currently used 
in clinical reading. 

By properly selecting the decomposition filters, desired 
features of an object can be separated firom noise. 
Therefore we can selectively enhance features of 
interest by modifying corresponding conqjonents in the 
transform domain. We used the quadratic spline 
wavelet function y/(x), which has compact support 

and is continuously differentiable. It is the derivative 
of a cubic spline function 0{x) as seen in Fig. 12. It 
can be shown that by using a wavelet that is the 
derivative   of  a   smoothing   fiinction   the   wavelet 

ti-ansform W^jf of Hie signal / is proportional to the 

derivative of the signal smoothed at scale 2^. The 
wavelet transform can then be considered as an 
adaptive (scale dependent) detection procedure that 
finds signal variation points in two orthogonal 
directions x andy [10]. 

(a) (b) 
Fig 12. (a) Cubic spline smoothing function d(x). (b) 

Quadratic spline wavelet y/(x) of compact support defined as 
the derivative of the smoothing function. 

In Fig 13, we present results on mammography data, 
which shows significant improvement over existing 
traditional window and leveling techniques used in 
soft-copy stations. The contrast hmited adaptive 
histogram equalization (CLAHE) clearly enhances 
monographic features. 



Fig. 13. (a) original film, (b) detailed window & 
leveling by a radiologist, (c) contrast limited adaptive 

histogram equalization (CLAHE). 

5. ROC Study: Experimental Design 
Our study focused on density 3 and 4 mammograms, on 
BiRads scale. A total of 60 cases, subdivided into 2 
groups (15 cancers & 15 normals) were read by three 
radiologist [11]. The diagnosis for mammograms 
included BI-RAD (0-5), LOC value (1-5) and 
localization of detected lesion. 

We have divided the radiologist into 2 groups: 
Group 1: "Softcopy Display"   +  Interactive Contrast 
Enhancement. 
Group 2: "Softcopy Display" only. 

Our softcopy monitors consist of high-resolution 
(2048x2560) dual Barco 5MP1H displays. Fig. 15. 
depicts a radiologist participant in the study along with 
dual monitor displaying monographic data. 

Fig. 15. Actual, experimental study. 

The ROC analysis can be seen in Fig. 16. The area 
under the curve with computer aided enhancement and 
without enhancement is 0.9136 and 0.8405 
respectively. The computer-aided diagnosis brings a 
noticeable improvement in cancer screening. 

RX Qjves for Data vvith and vvithout Bihancement 

-VWh Enhancement 

-VWthout Enhancement 

Bdse Positive Fradicn (FFT) 

Fig. 16. ROC curves for data from Group 1 ("with 
Enhancement") and from Group 2 ("without Enhancement") 

[11]. 



6. CONCLUSION 7. REFERENCES 

Our studies in one and two dimensions suggest that 
dyadic scales are often not sufficient to detect a mass in a 
dense mammogram. We showed the advantage of a 
continuous wavelet transform, which computed an 
expansion on voices between the common dyadic scales. 
We saw on real images of masses extracted from digitized 
mammograms that a correlation method between a known 
mass and the values of computed coefficients yielded 
approximately the same results, as a maximum method 
evolution. Thus, this study suggests that it is possible and 
of value to tune an analysis between octaves, for the 
detection of subtle masses in mammograms. 

On a second front, a multi-scale adaptive histogram 
equalization method was reported here, which showed 
promising results on mammography interpretation. We 
claimed that the advantage of this method comes from 
combining the local enhancement ability of AHE, and the 
selectivity of spatial-frequency components from wavelet 
analysis. The overall diagnostic sensitivity compares 
favorable with state-of-art enhancement methods, and 
also circumvents and reduces some of the artifacts 
visualized with existing methods. The ability of 
simultaneously displajdng the full dynamic confrast range 
was shown to be efficient in terms of interpretation time. 
The diagnostic performance showed the possibility of 
building a new "Power Windows" scheme for clinical 
usage. 

Follovraig the conventional three-windows settings, we 
can also tailor the parameters to find the best 
enhancement for particular abnormalities based on their 
spatial-frequency properties. This method proves to be of 
value in isolating cancer masses of diameter 1cm or less. 
We certainly expect a more reliable diagnosis compared 
to existing windowing schemes. 
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ABSTRACT 
We have carried out a receiver operating characteristics (ROC) study for the enhancement of mammographic features in 
digitized mammograms. The study evaluated the benefits of multi-scale enhancement methods in terms of diagnostic 
performance of radiologists. The enhancement protocol relied on multi-scale expansions and non-linear enhancement 
functions. Dyadic spline wavelet functions (first derivative of a cubic spline) were used together with a sigmoidal non-linear 
enhancement fiinction [1], [2]. We designed a computer interface on a softcopy display and performed an ROC study with 
three radiologists, who specialized in mammography. Clinical cases were obtained fi-om a national mammography database 
of digitized radiographs prepared by the University of South Florida (USF) and Harvard Medical School. 
Our study focused on dense mammograms, i.e. mammograms of density 3 and 4 on the American College of Radiology 
(ACR) breast density rating, which are the most difficult cases in screening, were selected. To compare the performance of 
radiologists with and without using multi-scale enhancement, two groups of 30 cases each were diagnosed. Each group 
contained 15 cases of cancerous and 15 cases of normal mammograms. Conventional ROC analysis was applied, and the 
resulting ROC curves indicated improved diagnostic performance when radiologists used multi-scale non-linear 
enhancement. 

Keywords: Multi-scale analysis, ROC analysis, contrast enhancement, digital mammography, softcopy display. 

1.   INTRODUCTION 
Recently, research has focused on the development of digital displays and softcopy workstations for digital mammography. 
Limited spatial resolution, luminance, and dynamic range cannot be solved simply by hardware improvements or computer 
programming alone. A possible solution of these problems is the application of muhi-scale contrast enhancement techniques 
derived fi'om non-linear models. 
Radiologists are mostly familiar with films where the Modulation Transfer Function (MTF) is approximately equal to 2* gray 
levels of contrast resolution. However, images acquired with digital detectors can record at least 2'^ different gray levels of 
intensity and are now commercially available. The wealth of dynamic range within these digital acquisition systems provides 
strong evidence that the signal-to-noise-ratio (SNR) can be increased in digital mammography. For expert radiologists the 
human visual system can detect at most 2' shades of gray. These considerations motivate the need for judicious methods of 
processing of digital radiographs that can optimize the bandwidth of the human visual system. We have designed 
enhancement software that is well adapted for this purpose and provides a "data mining" tool to map and make visible 
selected "quantum levels" of information living within the wide range of contrast resolution provided by digital detectors. 
Medical imaging is a field in which quantitative accuracy and qualitative fidelity are paramount. In any image enhancement 
process distortion of the original image and artifacts are not affordable. Multidimensional feature enhancement via wavelet 
analysis has been previously demonstrated on mammograms [3], [4], [5], [6], [7], [8] and is a powerful tool for processing 
digital medical images without artifacts. The enhancement process adjusts multi-scale coefficients at some particular spatial- 
fi-equency scale by increasing, decreasing or resetting their values. Each image is then reconstructed with modified 
coefficients. This simple enhancement technique relies on the idea that features of interest in a given radiograph are 
detectable at a particular scale and can be amplified, whereas noise and less clinically interesting features may live at other 
levels of analysis whose visual appearance can be diminished or eliminated in a reconstructed image. Further results and 
detailed descriptions of these methods can be found in [9], [10], [11], [12], [13], [14], [15]. 
Surprisingly, there have been very few studies carried out to evaluate the benefits of multi-scale enhancement methods in 
terms of diagnostic performance. Our study aimed at providing quantitative evidence of these benefits. ROC analysis [16] is 
most commonly used in medical imaging for such purposes, though alternative statistical approaches can be found as well 
[17]. ROC curves have been compared to evaluate the visibility of malignancies [18], mass detection techniques [19] or 
algorithms for computer-aided diagnosis (CAD) that use neural networks [20]. 



The chapter is organized as follows. In Section 2 we describe a protocol for multi-scale non-linear contr^t enhancement. 
After a short overview of the use of multi-scale expansions for contrast enhancement we discuss the dyadic spline wavelet 
selected, its implementation, and how a non-linear enhancement function is applied to multi-scale coefficients. Section 3 
addresses the design of a graphical user interface (GUI) that was developed to cany out the ROC study including high- 
performance displays and specialized hardware for softeopy display of digital mammograms. Next, flie ROC study itself 
together with its results and subsequent data mialysis is presented in Section 4. After a discussion of the results of the study, 
conclusions and possible directions of fliture research are presented in Section 5. 

2.   ENHANCEMENT PROTOCOL 

2.1.    Contrast Enhancement via Multi-scale Expansions: A Short Overview 
We summarize below, the advantages of the use of overcomplete multi-scale representations for adaptive contrast 
enhancement of digital mammograms. Critically sampled multi-scale representations are not suitable for detection and 
enhancement tasks because of alining effecte introduced during downsampling of the analysis [21], [22]. However, 
overcomplete representations avoid such aliasing artifacts and have the desirable property of being shift invariant [23], [24]. 
Indeed, Ms property ensures that the spatial locations of any mammographic finding within in an image are preserved across 
all scales. Thus, in our approach the transform coefBcient matrix size at each scale remains the same as the original spatial 
resolution of the digital mammogram, since there is no downsampling across each level of analysis. 

Overcomplete multi-scale analysis and reconstruction algorithms using dyadic scales previously developed in [25], [26], and 
[27] were used as an initial choice of analysis fimction for our enhancement protocol. The implementotion was carried out 
using several lowpass and highpass filters with localized fi'equency support. At each level of the multi-scale expansion an 
input image is decomposed into a coarse approximation and detailed structures. The coarse approximation is the output fit>m 
applying a lowpass filter, and the detailed structures are obtained fi'om highpass filtering. The approximation image 
corresponds to scaling coefficients, whereM the details extracted fiom the approximation are wavelet coefficients at a 
paticular scale. This procedure is successively repeated on the approximation image to obtain multiple levels of analysis. 
The coareest approximation is often referred to as "dc-cap". A gain or enhancement fimction modifies the matrices of 
coefficients that have been isolated by the filtere at each level and may boost coefficients at some scales and/or attenuate 
others. If the filters meet a perfect reconstniction condition, the image can be reconstructed from its wavelet representation of 
scaling and wavelet coefficients [28]. The filter bank implementation of enhancement processing by mi expansion- 
reconstniction algorithm for 2 levels of analysis is schematically illustrated in Figure 1. Image reconstruction that is also 
accomplished by appropriate filtering operations is presented in a simplified manner in Figure 1. 

HP = Highpass niter ! 
DC-Cap    i 

LP = Lowpass Filter 

Input 

Digital 
Mammogram 

Output 
Contrast 
Enhanced 

Digital 
Mammogram 

Level 1 

MuM-Scale Expansion with Enhancement Module Image Reconstruction 

Figure 1: Multi-scale analysis with non-linear contrast enhancement: Schematic of Alter bank implementation. In the left part 
multi-scale expansion with enhancement for 2 levels of analysis is shown, and reconstruction is presented (in a simplified 
manner) in the right part 

Tlie modified matrices of coefficiente are simply "plugged in" during reconstruction producing a "focused" subband 
enhancement. As shown above, the enhancement fimction can be implemented independently of a particular set of filters and 
easily incorporated into a filter bank to provide the benefite of multi-scale enhancement [1], [29], 



2.2.    High Speed Implementation to Support Interactive Processing 
Similar to orthogonal and biorthogonal discrete wavelet transforms [30], the discrete dyadic wavelet transform can be 
implemented within a hierarchical fihering scheme. Let an input signal x(n) be real, x(n) e /'(Z), « e [0,Af-l], i.e., x(n) is 

supported on the index interval [0, N-1], and let X{co) be its Fourier transform. Depending on the length of each filter 

impulse response, filtering an input signal may be computed either by multiplying X{co) by the fi-equency response of a 
filter or by circularly convolving x(n) with the impulse response of a filter. Of course, such a periodically extended signal 
may change abruptly at the boundaries and cause artifacts. A common remedy for such a problem is realized by constructing 
a mirror extended signal 

\x{-n-\),   ifKe[-A^,-l] 

""^ '    \x{n\ if«e[0,#-l]' 

where we chose the signal Xme(n) to be supported in [-N, N-1]. In [1] it is shown how a mirror extension is a particularly 
elegant solution in conjunction with symmetric/anti-symmetric filters, since a signal is of a particular type of symmetry at 
each stage of the filter bank. The optimized circular convolution described in [1] was implemented in native "ANSI C" to 
speed up performance for multi-scale decomposition and image reconstruction. Parameters of this algorithm included number 
of levels of analysis, gain, and threshold. This algorithm was incorporated into a graphical user interface (GUI) developed 
during the preparation of the study. 

As a further goal, we envision developing feature specific enhancement protocols for each type of lesion. An enhancement 
protocol would consist of a multi-scale expansion of a mammogram by a specific basis and an associated non-linear 
enhancement function that is best matched to a specific type of lesion, e.g. microcalcifications. For the study under 
consideration, a dyadic spline wavelet function was used as the basis, and a non-linear sigmoidal function was applied as the 
enhancement function. Both are described in greater detail next. 

2.3.    Dyadic Spline Wavelet Algorithm 

The wavelet transform of a signal/('x^ at scale s and position x is defined by Wf{u,s) = f*Wus- ^f^^^~r^'   v^ > 

where the function/is projected on a family of translated and dilated basis functions (wavelets) Wusi^^ = ~rV\  
y/s    \   s 

y/(x) is the mother wavelet of zero average. Both, translation and dilation parameters u and s are continuous for the 
continuous wavelet transform. To allow fast numerical implementation of discrete wavelet transforms, Mallat and Zhong [31] 
introduced the dyadic wavelet transform, where the scale parameter varies only along the dyadic sequence {2'}, with jeZ. 
Extending this approach to two dimensions by the use of a tensor product yields the 2-D dyadic wavelet transform that 
partitions plane orientations into two bands. This means that there are two channels of analysis along orthogonal directions x 
and  y.   The   wavelet   transform   of  the   2-D   signal f(x,y)   at  the   scale   2/  has   two   components   defined   by: 

f^,'/(^,J') = /V^.(^,j) and W^J(x,y) = f*wl(x,y),viith y,l(^x,y) = ^yf\^,^), fb?=/,2). We used the quadratic 

spline wavelet function y/(^x) defined by Mallat and Zhong in [31] of compact support and continuously differentiable. Its 

^sin(^)V 
Fourier transform can be derived as (^(o) = (7V0) 

function 0{x), whose Fourier transform is 6{o}) = 

case in Figure 2 below. 

y/{x) is the first derivative of a cubic spline smoothing 

V    % 

[1]. These functions are displayed for the one-dimensional 
sin(^)' 

A 



W (b) 
Figure 2: (a) Cubic spline smoothing function ^x). (b) Quadratic spline wavelet y>(x) of compact support defined as the first 

derivative of the smoothing function. 

Using a wavelet that is the derivative of a smoothing fimction it can be shown that the wavelet transfonn W^f of the signal/ 

is proportional to the derivative of the signal smoothed at the scale 2'[32], The coefficients of modulus maxima detection are 
then equivalent to an adaptive sampling that finds signal variation points in the two orthogonal directions X and j/. 
As images represent finite ener^ signals measured at some finite resolution, we cannot compute the wavelet transform at 
scales below the limit set by this resolution. We applied this analysis at dyadic scales varying fiom 1 (original signal) to the 
limit imposed by acquisition (digitirer sampling rate). Figure 3 shows an example for one level of mi overcomplete wavelet 
expansion of a region of interest (ROI) with a spiculated mass at a dyadic scale, and in Figure 4 wavelet coefficients of 
microcalcifications at the finest dyadic scale are presented. 

(a) (b) (c) (d) 
Figure 3: Level 5 of an overeomplete dyadic wavelet expansion of a spiculated mass, (a) Original image, 0») Horizontal details, 

(c) Vertical details,(d) Approximation image. 

(a) (b) (c) 
Figure 4: (a) Original ROI with microcalcifications. (b) Horizontal and (c) Vertical dyadic wavelet coefficients, 

2.4.    Non-Linear Enhancement Function 
Modification of selected analysis coefificients within a certain scale can make more obvious indiscernible or barely seen 
mammographic features [14], Contrast enhancement was achieved by applying an enhancement fimction to transform 
coefficients at selected scales. This operation results in local attenuation or amplification of coeflBcients, Enhancement or 
gain fimctions must be cumulative and monotonically increasing, in order to preserve the order of intensity information in the 
original image and to avoid artifacte [26], Figure 5(a) provides a very simple example of a piecewise linear enhancement 
fimction. Multi-scale coefficients are denoted Wjj, which are modified by applying an enhancement fimction _^w,^. T is the 
threshold of the fimction, and a the gain. The effect of the enhancement fimction depends on the value of the angle ft For 0< 
45* there is an attenuation of the coefficients (a<l), at ft=45° we have the identity fimction (a=l), and for ft > 45° there is a 
smooth amplification of the coefficients (a>l). The values of the two parameters, Jand ft(or a), determine flie final shape of 
flie enhancement fimction. Figure 5(b) displays a hard-thresholding function for denoising, where Coefficients with modulus 
|w„| < r are set to zero. Unfortunately, these two particular fimctions have the disadvantage of being discontinuous at the 

threshold value JT. This could result in an abnormal distribution of coefficient values in the output and may create sharp 



peaks on both ends of the histogram of a particular output mapping. For this reason, smoother functions, like sigmoids, are 
preferable and were used in this study. Figure 6 shows an example of such a function as described in [2]. 

(a) (b) 
Figure 5: (a) A simple piecewise linear enhancement function, (b) Hard-tliresholding function. 
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Figure 6: A sigmoidal non-linear enhancement function. 

The analytical formulation of the sigmoidal enhancement function as designed in [33], [2] is the following: 

/(Wjj) = a \sigm [c{vi^^ - b)) - sigm (-cCw^ + *))] 

1 
a = 

sigm(y) 

sigm (c(l -b))- sigm (-c(l + b)) 

1 

0<6<1 (1) 

l + e- 

Parameters b and c control the threshold and the rate of enhancement (gain) respectively. This enhancement function is 
continuous, monotically increasing, and has a continuous first derivative. This ensures that the application of the function will 
not introduce any new discontinuities of coefficients in the transform domain. 
From Figure 6 we see that this enhancement function decreases the value of the coefficients around zero, which is equivalent 
to a denoising action, while it may increase values of the coefficients outside this range, equivalent to enhancement or 
amplification. This type of enhancement function, in 'steps', offers a very rich and flexible paradigm to carry out non-linear 
dynamic analysis of coefficients within a specific scale [34]. 
There are many criteria for the selection of the enhancement function applied to the coefficients of a particular level of 
analysis for contrast enhancement. One goal of the study described here was to develop a research tool for testing 
enhancement functions targeted for specific mammographic features. As this process requires specialized expertise and a 
substantial time investment, no systematic study of the problem of associating enhancement functions with target features in 
mammograms has been reported in the literature. 

In general, non-linear estimators are signal dependent and behave differently for different realizations of each signal. In this 
context, Johnstone and Donoho have shown that by considering the signal as deterministic, thresholding of wavelet 
coefficients gives a nearly optimal estimation of piecewise smooth functions [35], [36]. More specifically, for a noisy signal 
of size N, thresholding of the wavelet coefficients with T = a^J2ln(N), where a is the standard deviation of the coefficients, 
provides an asymptotically optimal estimator of the original signal in the mini-max sense [36]. Thresholding of wavelet 
coefficients performs an adaptive smoothing of the image by averaging noisy areas and preserving or enhancing coefficients 
in areas of sharp transitions. Noise standard deviations can be estimated by determining the median wavelet coefficient value 
at the finest scale or with local discrete statistical estimation in the transform domain. Using extremely local variances for the 



estimation of atiireshold leads to a veiy aggressive posturing of the enhancement function, and represents a high amount of 
intervention in adjusting the output, while global variance measurements are less noticeable. Superiority of either method 
depends on the screening protocol used by the radiologist and the kind of analysis to be performed. For exmnple, fine 
microcalcifications represent high frequency information of the image. We would expect the local variance for such a feature 
to be high within a selected ROI. Consequently, smooth amplification of coefficients within this particular spatial fi-equency 
range (in combination with possibly decreasing the information of other spatial frequencies) will enhance these features of 
interest. Similar analysis can be done to enhance low spatial frequency features such as masses. A block diagram of the 
enhancement process for coefficients at selected scales, which are chosen with respect to the particular mammographic 
feature to be enhanced, is shown in Figure 7 below. 

Since the computation of the enhancement parameters uses data dependent information such s& local or global coefficient 
variance, digital and digitized radiographs acquired under different imaging conditions are best processed independently to 
achieve optimal enhancement. Intrinsic properties of the radiograph are therefore incorporated in the setting of the 
parameters. In our work we used both coefficient variance computed with respect to a selected ROI aid user input (see 
Section 3.2) to adapt the threshold and gain parameters. 

Feature Specific 
Coeflidents at 
Selected Scal^ 

Determination of 
Enhancement 
Parameters 

Application of 
Non-Ilnear 

Enhancement 
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Image 
Reconstniction 
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Figure 7: Block diagram of modifying feature specific coefflcients at selected scales by app^ng a non-linear enhancement function. 

3.   DEVELOPMENT OF A GRAPHICAL USER INTERFACE (GUI) 

3.1. Motivation 

Running such an enhancement algorithm in a batch mode might be sufficient for single experiments. However, adjustment of 
parameters tied to a data dependent enhancement function is slow, because of the repeated need to decompose and 
reconstruct from modified coefficients. A more desirable situation would be to observe the results of modified multi-scale 
coefficiente interactively and to continue the enhancement procedure, until results are visually satisfactory or the decision is 
made that no further improvement can be achieved. In addition, with introducing fixed enhancement protocols into a clinical 
screening paradigm, the algorithm must be simple, fast, and user-friendly, i,e, usage of the algorithm should be familiar to the 
radiologist mid intuitive. Since each radiologist may have preferences vnth respect to contr^t in mammograms, it must be 
possible to adjust parameter settings to individual preferences. Thus, we designed a graphical user interface (GUf) to 
facilitate carrying out such a study and to create a softcopy display proto^pe, whose successors might find entrance into 
clinical screening. We call this application a "test bed" softcopy display tool. Its first version was employed for the ROC 
study described in the next section. 

3.2. Design and Implementation 

The graphical user interface (GUI) developed for this study w^ written in Visual C++ 6.0. The code for flie wavelet 
expansion and image reconstruction that w^ written in native "ANSI C" to speed up performance could be incorporated and 
executed in this environment without major modifications, thus shortening development time. Some of the guidelines and 
considerations for flie design and implementation of the GUI are described next. 
The prototype interface was primarily designed to process raw 16-bit data. Data was obtained from a national mammopaphy 
database of digitized radiographs provided by the University of South Florida (USF, "Digital Datable for Screening 
Mammography" (DDSM)), Our database of digitized mammograms (stored on twenty-two 8mm tapes) at the time of the 
study contained 586 selected cases of malignant lesions, biopsy proven, and 437 cases of normal breasts. More specifically, 
different types of lesions are represented in the following proportions: 100 round and oval malignant masses, 216 spicular 
lesions and 248 microcalcifications, 559 c^es of dense breaste (density of 3 mid 4) with 266 normals and 293 cancerous, 
referred by radiologists as the most challenging cases, were included m the database. 

Images from the mammography database were digitized from film at resolutions of 40 to 50 jim. Image line lengths (# of 
columns) varied between 2000 and 3000 pixels, and number of rows from 4000 to 5900 pkels. Depending on the scanner 
utilized for digitization the contrast resolution WM either 12 bits or 16 bits per pixel resulting in 15-50 megabytes per view. 
To handle this large amount of data and to provide the diagnosing radiologist as much information as possible, all four views 
(right and left medial-lateral (RMLO, LMLO) and right and left cranial-caudal (RCC, LCC) of a case were loaded mto 
memory and displayed as downsampled images on display screen, which consisted of two high-resolution MegaScan 



monitors each with a screen size of 2048 by 2560 pixels. Specialized framebuffers allowed a display of 2'° gray levels (see 
Section 3.3). The four views were aligned to assist the radiologist to look for asymmetries. In addition, one view could be 
selected, and a viewport could display a selected region of interest (ROI) at full (original) resolution from a selected 
mammogram. The size of the viewport could be chosen as 512 by 512, 1014 by 1024 or even 2048 by 2048. The center of the 
ROI was determined through the mouse pointer in a chosen window. Thus, the original mammogram could also be examined 
through the viewport, if desired. More importantly, suspicious areas could be captured in the viewport and processed through 
enhancement via the muUi-scale expansion described in Section 2. For the enhancement procedure the user could adjust the 
number of subbands of the expansion as well. After selecting a ROI the image was decomposed onto dyadic wavelet basis 
functions yielding wavelet coeflFicients. Coefficients were modified by a sigmoidal non-linear enhancement fiinction, and the 
image was reconstructed from these modified coefficients in nearly real-time. 

Figure 8(a) shows Dr. Koenigsberg, one of three radiologists who participated in this investigation, during the ROC study. 
Figure 8(b) depicts a typical screen display of the GUI showing additional viewports described above. 

(a) (b) 
Figure 8: (a) Tova Koenigsberg, M.D., using the GUI during the preliminary ROC study described above, (b) Typical screen 

display used during the ROC study: four original digitized mammograms of one case on the right monitor, and a 
selected view, the GUI interface for parameter adjustments, original and enhanced ROI are shown on the left monitor. 

As mentioned in Section 2.4 the shape of the enhancement fiinction can be changed through modification of the two 
parameters gain and threshold. Therefore, each parameter could be adjusted through sliders for each level (subband) of the 
multi-scale expansion (see Figure 9(b)). On release of the slider button, a reconstruction "event" was "triggered", and a 
resulting image presented in an output window. For example, reconstruction of a 512 by 512 matrix for five levels of 
decomposition (5 subbands) took 5 to 6 seconds. For four subbands reconstruction time shortened to 4 to 5 seconds. 
Reconstruction times trecon for different sizes of the ROI and different number of levels of analysis are presented in Table 1. 
However, reconstruction time can certainly be improved to achieve true real-time performance, by employing faster 
algorithms. 

1       Size of Region of Interest (ROI) trecon for 4 Levels of Analysis -^ r      t„t„ fi#5 teveW of Andi^ 
512x512 4-5 seconds 6-7 seconds 

1024 X1024 19-20 seconds 24-25 seconds 

Table 1: Reconstruction times trecon for two different levels of analysis and two sizes of ROI. 
After processing, enhanced images could be saved together with information about the location of the ROI (the position of 
the ROI was marked in its corresponding downsampled view) to facilitate evaluation of a particular diagnosis for each case in 
comparison with the "ground truth" provided in the USF database. All suspicious areas in a case could be carefiilly examined 
by sequentially choosing different views and multiple ROIs. 

Figure 9(b) shows the test bed interface as an illustration. Interactive (real-time) enhancement was accomplished via sliders 
shown in the graphical user interface (GUI). The enhancement operation relied on the optimality of parameters derived from 
their non-linear models and on the strategy employed for the type of enhancement applied to each subband of coefficients 
(amplification, preservation or diminution). Selected subband coefficients at a particular level could be strongly suppressed 
by choosing large thresholds (> 2) and small gains (< 1), which can be desirable for the elimination of (structured and 
acquisition) noise, or normal benign anatomical (fibroglandular) structures. 

Since the size of digital mammograms is quite large, an ROI (fixed at either 512 x 512 or 1024 x 1024) within the original 
image was chosen to avoid computing over regions that do not contain suspicious areas. This is also shown in Figure 9, 
where Figure 9(a) exhibits an original digitized mammogram with a 512 x 512 ROI that contains a possible mass. 



Figure 9(c) and Figure 9(d) display this ROI before and after enhancement via non-linear modification of multi-scale 
coeflBcients, respectively. 

w m 
Figure 9: (a) Original mammogram with selected ROI containing a mass, (b) Multi-Scale Contrast Enhancement (MSCE) GUI, 

(c) Original ROI, and (d) Enhanced ROI. 

3.3.    Display and Hardware Settings 
The enhancement protocol was executed on an IBM IntelliStation Z Pro Professional Workstation Type 6865, This machine 
had two Intel Pentium n Xeon microprocessors (450 MHz), 512 Mbytes of RAM and was wjuipped with 36 Gbytes of hard 
disk space. Windows NT 4.0 with service pack 4 was the operating system. 
To explore the richness of information quantized at 16-Mt per pixel (bpp) grayscale data (65536 shades of gray), the IBM 
IntelliStation woritstation was equipped with two BARCOMed 5MP1H Graphics controllers. These are high-resolution 
display subsystems for the PCI bus with a resolution of 2048x2560 pixels each, a digital-to-analog converter (DAC) capable 
of 1024 shades of gray, and real time window leveling. With the BARCO framebuffers, an extended hardware palette of 
nearly 16,000 entries could be accessed through specialized "C" function calls that were part of a library provided to us as 
developers for BARCO/Metheus. Using these library functions, the extended palette WK loaded with a ramp of 4096 shades 
of gray corresponding to 12-bit resolution. Images stored in 16-bit per pixel format, were rescaled to 12 bpp, if necessary 
(most of the mammograms were digitized at a resolution of 12 bpp), and then displayed at fiill resolution. Direct access to the 
video framebuffer also sped up the display process useflil for updating and refreshing the different views on the screen. 
Two high-resolution MegaScan monitors were attached to this workstation providing dual headed display on a single logical 
framebuffer or virtual desktop of 4000x2048 pixels, respectively with Windows NT 4,0. To ensure the accurate depiction of 
the same image quality on both screens, a BARCO P1500 luminance photometer was used. It recognirad the 1024 shades of 
gray displayed by a monitor and had a range of 0-450ft-L. Both monitore were calibrated to correct for non-linearity of 
display properties through gamma coirection. 
Lighting conditions were controlled for the ROC study to model reading room conditions. The ambient light intensity was 
measured with the luminance photometer to be 12.802659 candelea/m^. It is worthwhile to note that the optimality of 
enhancement parametere is independent of the CRT display quality and the image acquisition quality. As their computation is 
data driven, they are adapted to signal content and its characteristics. As our radiologists gave us feedbw;k on the quality of 
the enhancement, we can adjust these initial default settings in future studies. 

4.   DESCMPTION OF THE RECEIVER OPERATING CHARACTEMSTICS (ROC) STUDY 

The first receiver operating characteristics (ROC) study focused on overcomplete dyadic wavelete for enhancement of 
mammographic features in digitirad mammograms. Specifically, dyadic spline wavelet fimctions were used together with a 
sigmoidal non-lmear enhancement fanction explicitly described in Section 2, The ROC study included three radiologists 



specialized in mammography. The Director of the Breast Imaging Center at Columbia-Presbyterian Medical Center, Dr. 
Suzanne Smith, assisted in the selection of cases. 

4.1. Selection of Cases 
To measure the benefits of diagnosing digitized mammograms with enhancement through multi-scale expansions, we focused 
on dense mammograms, i.e. mammograms of density 3 and 4 on the American College of Radiology (ACR) breast density 
rating, which are the most difficult cases in screening. In general, the enhancement protocol aimed at improving the detection 
and localization of mammographic features, such as microcalcifications, masses, and spicular lesions without introducing 
"false-positives". 
To compare the performance of radiologists with and without using the enhancement tool, two groups of 30 cases each were 
presented. Each group contained 15 cases of cancerous and 15 cases of normal mammograms. As mentioned above, a 
national mammography database of the University of South Florida provided "ground truth" (mostly through biopsy) for the 
selected cases. The selection was carried out very carefully under the guidance of a mammographer (Dr. Smith), in order to 
find rather challenging cases of similar difficulty for each group. Images showing metal markers ("bibis") to indicate 
suspicious regions of breast tissue were avoided as well as obvious malignancies. Due to time constraints the number of cases 
was limited for this initial study. 

4.2. Paradigm of Diagnosis of Study 
For each case presented to the radiologist, the enhancement procedure followed was the following: 

Paradigm A:      Without Enhancement: 
The radiologist made a diagnosis based only on the four original displays and the viewport. No processing of ROIs was 
allowed. 

Paradigm B:      With Enhancement: 
The radiologist selected an ROI in one of the views and could apply multi-scale enhancement. Four levels of coefficients 
were computed. The radiologist then evaluated the quality of an enhanced ROI and adjusted the equalizer sliders of a channel 
to improve the visual quality of suspicious regions. Once he/she was satisfied with the visual result or if he/she judged that 
additional benefit could not be achieved, he/she made a diagnostic decision. 

A diagnosis included specifying all lesions found and assigning a BI-RAD scale to each breast and the case. In addition, the 
radiologist was asked to choose a level of confidence (LOC) for each positive diagnosis, i.e. cancer is present, on an integer 
scale from 1 (definitely negative, i.e. total confidence that there are no malignant lesions) to 5 (definitely positive, i.e. total 
confidence that there is a malignant lesion). The value for the LOC was used in the analysis of data to decide whether a lesion 
was classified as malignant or benign (please see discussion of LOC ratings m Section 4.4). 

4.3. ROC Data 
Table 2 and Table 3 summarize the data acquired during the study. Group 1 comprises the set of cases, where the radiologists 
were allowed to take advantage of the enhancement protocol, whereas Group 2 contains those cases, where no processing 
could be applied. Each of the tables shows the case numbers, the case designation and total number (#) of lesions for each 
case according to the mammography database (DB), and for each of the three mammographers the BIRAD rating and level 
of confidence (LOC) values. The BIRAD rating could be chosen from the standard categories 0-5 with 0 meaning that 
additional information for a more confident diagnosis was needed. In such cases, the radiologists were asked to also select a 
BIRAD rating different from 0, if they were asked to make a diagnosis without any additional information. This number is 
shown in parentheses for such cases. 

In each table both groups are sorted into actually-negative cases (normals with "0 lesions) and actually-positive cases 
(cancers with, at least "1  malignant lesion), since this is required for subsequent analysis of the data. 



Grouol rvwtt) Enhancetnenft 1 
MammoaraDfi arl Mammoaraaher 2 MammoaraDher 3 

Case* Database DB Total # of Lesions Bl RAD LOG Bl RAD LOG Bl RAD LOG 
2 A 0058 0 4 3 1 3 2 
S A 0069 0 1 2 1 1 1 
6 A 0041 0 3 2 1 1 1 
7 A 0077 0 3 2 2 2 1 
9 A mm 0 2 2 2 2 2 
13 A 0M7 0 0f3) 2 1 0f31 3 
IS A 0080 0 mm 3 2 2 1 
IB A 0089 0 3 3 1 1 2 
19 A 0062 0 2 2 1 2 1 
21 A 0057 0 2 2 1 ora) 3 
U A 0072 0 1 2 1 1 1 
25 A 0070 0 1 2 0f31 2 1 2 
26 A 0068 0 1 2 1 2 1 
28 A 0039 0 3 2 1 OM^ 3 
30 A 0092 0 3 2 1 1 1 

1 B 3044 4 4 4 4 4 3 
3 B 3073 3 2 3 2 4 3 
4 B 3006 6 5 5 5 5 S 
8 B 3032 om 2 5 4 4 4 

10 B 3107 5 4 4 4 5 4 
11 C 0060 o(m 3 0 3 Of4» 3 
12 B 3057 4 4 5 4 4 4 
14 B 3078 6 4 5 4 0f4) 3 
IT B 3033 0f3^ 2 0 2 0f3) 3 
18 B 3031 0f4) 4 6 4 0f31 3 
20 B 3076 0f3) 3 0 3 or5) 4 
22 B 3058 5 5 5 5 4 4 
23 B 3079 2 2 1 1 1 1 
27 B 3047 3 2 0(4) 3 0f41 3 
29 C0008 or3i 3 3 3 0f4^ 3 

Table 2: ROC data for three mammographen for Group 1, i.e. with Enhancement enabled. 

GrouD2 rvwthout Enhancemenll 1 1                  1 
Mammooraoh srl Mammoaraoher 2 MammoaraDhei 3 

Case# Database DB Total # of Lesions Bl RAD LOC Bl RAD LOC Bl RAD LOC 
3 A 0015 0 2 2 1 1 1 1 
4 A 0034 0 2 2 oat 2 0f3) 3 
8 A 0112 0 2 1 1 1 or4) 3 
8 A 0020 0 2 2 1 1 2 2 
9 A 0003 0 3 2 1 1 1 1 
13 A 0030 0 2 2 1 1 0f3) 2 
15 A 0009 0 2 2 1 1 2 2 
IS A 0037 0 2 2 1 1 1 2 
17 A 0099 0 mm 2 1 1 2 1 
18 A 0116 0 o(m 3 1 1 1 1 
21 A 0035 0 or3i 2 0f4) 3 om 3 
23 A 0018 0 2 2 1 1 1 1 
24 A 0022 0 2 2 1 1 om 3 
27 A 0005 0 om 2 0f3) 2 1 2 
30 A 0016 0 2 2 1 1 1 2 

1 B 3003 1 2 1 1 5 5 
2 B 3389 2 2 1 1 1 1 
6 B 3009 0f4^ 4 or3) 2 0(4) 3 
7 C 0309 4 4 1 1 or4) 3 
10 C 0142 0f3) 3 om 2 1 2 
11 B 3016 0f4) 4 0f3) 2 4 4 
12 B 3382 2 2 1 1 3 2 
14 B 3134 5 4 4 4 s s 
19 B 3005 0f3) 3 3 3 or4) 4 
20 C 0127 omt 3 OM) 3 or4) 4 
22 C 0015 OM^ 4 0f4) 4 5 5 
25 B 3007 3 3 4 3 4 4 
26 B 3012 5 5 6 5 or4) 3 
28 B 3380 or4) 4 4 4 or4) 4 
29 C 0358 s 5 5 4 0f4) 4 

Table 3: ROC data for thr ee mammogra phers for G roup 2, Le, withi int enhance ment. 



4.4.    ROC Analysis: General Principles 
The most widely used method to objectively evaluate the performance of a diagnostic system or the difference in 
performance between two diagnostic systems is ROC analysis. It compares radiologists' image-based diagnoses with known 
states of disease and health. In ROC analysis, performance of a diagnostic system is described by the indices of "sensitivity" 
and "specificity", where "sensitivity" can be expressed as the true-positive fraction (TPF) and "specificity" by the true- 
negative fraction (TNF) of a diagnosis [16]. In a complimentary way, the false-negative fraction (FNF) and the false-positive 
fraction (FPF) can be defined as FNF = 1-TPF and FPF = 1-TPF, respectively, with a similar interpretation. Due to this 
dependence, it is only necessary to measure one pair of indices, and frequently TPF and FPF are used (as in our study). 

The underlying model for ROC analysis is the use of probability density distributions of a radiologist's confidence in a 
positive diagnosis for a particular diagnostic task for true positive and true negative patients [16]. It is currently accepted that 
based on a confidence threshold, i.e. a particular level of confidence (LOC) in a positive diagnosis, a diagnosis is considered 
to be positive, if it exceeds this threshold, and a diagnosis is considered to be negative, if it falls below the threshold. TPF and 
FPF are then calculated from the probability density distributions as areas under the curves delimited by the confidence 
threshold (see Figure 10). If the confidence threshold is varied continuously, an ROC curve can be generated from the pair 
values for TPF and FPF. ROC curves that indicate better decision performance are positioned higher in the unit square 
spanned by FPF and TPF (higher TPF values for the same FPF values). The area under the ROC curve, A^ provides a usefiil 
summary index for the inherent discrimination performance of a diagnostic system. Thus, A^ is the average value of 
sensitivity of a corresponding ROC curve, if the specificity of the system is selected randomly between 0.0 and 1.0. 
Conversely, it can be considered as the average value specificity of a corresponding ROC curve, if the sensitivity of the 
system is selected randomly between 0.0 and 1.0 [16]. 
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Figure 10: Schematic example of the model that underlies ROC analysis. The bell-shaped curves represent probability density 
distributions of a radiologist's confidence in a positive diagnosis. A confidence threshold, represented by a vertical line, 
separates "positive" decisions from "negative" decisions (This figure was reprinted from [16]). 

In practice, data for an ROC analysis is obtained by providing a set of rating categories to the radiologist. For a rating scale 
we chose discrete values from 1 to 5 for the level of confidence (LOC) in a positive diagnosis. The meaning of these values 
was as follows: (1) definitely or almost definitely negative, (2) probably negative, (3) possibly positive, (4) probably positive, 
and (5) definitely or almost definitely positive. With this choice the value for the LOC is similar to the standard BIRAD 
rating scale used in screening. 

To generate an ROC curve from discrete data requires assumptions about the functional form of the curve. The "binormal" 
model has been widely used in medical imaging. This model includes two adjustable parameters, and it is assumed that each 
conventional ROC curve has the same functional form as that implied by two "normal" (i.e., Gaussian) decision variable 
distributions with generally different means and standard deviations [37], [38]. 
The two adjustable parameters of the binormal ROC curve can be taken to be the y-intercept and the slope of the straight line 
that represents the ROC curve, when it is plotted on normal-deviate axes. These two parameters, denoted as "a" and "b", can 
be interpreted as an effective pair of underlying Gaussian disfributions as the distance between the means of the two 
disfributions and the standard deviation of the actually negative distribution, respectively with both expressed in units of the 
standard deviation of the actually positive distribution [16]. With the binormal model, a maximum-likelihood parameter 
estimation scheme is then used to generate an ROC curve that best represents the data. 
If two different diagnostic systems are to be evaluated, the statistical difference of an apparent difference between measured 
ROC curves is of interest. Testing differences between ROC curves is well described in the literature [39], [40]. 



4.5.    Results from ROC Analpis 
In our study, ROC analysis was possible, since the "ground truth" for each case was provided by the mammography database. 
In general, any enhancement protocol should incre^e sensitivity, i.e. fraction of true-positives (TPF), without decreasing 
specificity, i.e. essentially without increasmg the fraction of false-positives (FPF) [41]. An initial analysis of the data counted 
the number of false-positives and true-positives in each group of cases. Before a lesion was considered being diagnosed as 
malignant or benign, the LOC value was thresholded [16], The threshold value influences the shape of the ROC curve and its 
interpretation. For example, if the threshold for the level of confidence was chosen to be 3, meaning that lesions with a LOC 
greater or equal 3 were considered as malignant, then the average TPF was found to be 0.667 with enhancement, and TPF = 
0.569 without enhancement. This observed increase in sensitivity is encouraging, though it was accompanied by a slight 
incre^e in the fimction of false-positives (0.222 compared to 0.178). The latter is not too surprising, since the cpplied 
enhancement protocol only tised dyadic spline wavelets with the non-linear sigmoidal enhancement function, which is 
certainly not optimal for all types of lesions. We believe that dyadic splme wavelet expansions are best used to enhance 
microcalcifications. If the analysis of the data only focused on microcalcifications, flien we observed TPF = 0.417 with 
enhancement compared to TPF = 0.222 without enhancement. No incre^e or decre^e m FPF was noticed! The last finding 
supports the promise for fiiture research to design specific enhancement protocols for each mammographic feature. Table 4 
summariMS initial results of Ihe ROC study using the single basis function described earlier in Section 2.3. 

TPF 
pm^^^^^^p^B^H 

TPF 
■■^^■i^^^^^^^B 

FPF FPF 
0.667 0.233 0.569 0.178 

1                                                 1 
^^^■^^Mi^MM^^^^^^^^^^^^^^^^M 

TPF FPF TPF FPF 
0.417 0.0 0.222 0.0 

Table 4: Results of preliminaiy ROC study. TPF refers to the ftvction of true-positives and FPF to the fraction of false-positives. 

A more thorough analysis of the data was undertaken by using the ROCKIT soSwme developed by a research group led by 
Charles Metz at the University of Chicago [42], [43]. This software package was written to analyM data fiom ROC studies 
and to generate corresponding ROC curves. More specifically, the purpose of ROCKIT is to calculate maximum-likelihood 
estimates of the parameter of a conventional "binormal" model for the input data, to calculate maximum-likelihood 
estimates of the parametere of a "bivariate binormal" model for data from two potentially correlated diagnostic tests and, 
thus, to estimate the bmormal ROC curves implied by those data and their correlation; and to calculate the statistical 
significmce of the difference between two ROC curve estimates using any one of three distinct statistical tests: 

1. TTie Bivariate Test: A bivariate Chi-square test of the simultaneous differences between the "a" parameters and 
between the "b" parameters of the two ROC curves. (Null hypothesis: the data sets arose from the same binormal 
ROC curve.) 

2. The Area Test: A univariate z-score test of the difference between the areas under the two ROC curves. (^Vkff 
fypotfksir. the data sets arose fit>m binormal ROC curves with equal areas beneath them.) 

3. The TFP Test: A univariate z-score test of the difference between the true-positive fractions (TPFs) on the two ROC 
curves at a selected false-positive fraction (FPF). (Null hypothesis: the data sets arose from binormal ROC curves 
having the same TPF at the selected FPF.) 

Three types of input data are allowed for statistical testing of the differences between ROC curves: 

1. Unpaired (uncorrelated) test resulte. The two "conditions" are applied to mdependent case samples — for example, 
fiom two different diagnostic tests performed on tiie different patiente, from two different radiologists who make 
probability judgmente concerning the presence of a specified disease in different images, etc.; 

2. Fully paired (correlated) test results, in which data from both of two conditions are available for each case in a smgle 
case sample. The two "conditions" in each test-result pair could correspond, for example, to two different diagnostic 
tests performed on the same patient, to two different radiologists who make probability judgmente concerning the 
presence of a specified disease in the same image, etc.; and 

3. Partially-paired test results — for example, two different diagnostic teste performed on the same patient sample and 
on some additional patients who received only one of the diagnostic tests. 



ROCKIT assumes that the population ROC curve for each condition plots as a straight line on "normal-deviate" axes, or 
equivalently, that the input data follow normal distributions after some unknown monotonic transformation [16]. ROC curves 
measured in a broad variety of fields demonstrate this "binormal" form [44], [45], and [46]. The assumption may be satisfied 
even when the raw data have multimodal and/or skewed distributions [43], [42]. 

Using the ROCKIT software the analysis was first applied independently to the datasets for Group! and Group 2 for each of 
the three radiologists. Unfortunately, this approach did not allow us to compare the diagnostic performance for the two 
diagnostic systems (softcopy display with and without enhancement). The reason for that was that the analysis for, at least 
one group of cases could not be completed, since the data was found to be degenerate [41]. In this case, the result of the ROC 
analysis would be a straight line with a constant value for TPF, and, therefore the software aborts processing to avoid 
meaningless output. According to the authors of the software, a degenerate data distribution can be found, if the number of 
samples is too small or in datasets with many tied values [43]. 
Since the number of cases could not be increased after conducting the study, and in order to obtain more complete results, we 
decided to apply the analysis to the union of data fi-om all three radiologists. This was justified by the fact that all three 
radiologists came from the same population with a similar level of experience. Thus, their performance should be similar 
under the same conditions, and the data could be treated as independent samples (unpaired data). If the data did not have to 
be pooled, it would have been unpaired, since the two different conditions were applied to different sample cases. 
Nevertheless, we are well aware that the statistical significance of the results must be interpreted carefiilly. For fiiture ROC 
studies we plan to increase the number of cases, in order to avoid such a problem. To check on our assumption of 
independent samples (unpaired data) and for completion we also repeated the analysis with the input as paired data. These 
results are included in this chapter as well. 

For the analysis Group 1 (with enhancement) was set as Condition 1 and Group 2 (without enhancement) was considered as 
Condition 2. The resulting ROC curves for data analyzed as unpaired are shown in Figure 11. Their corresponding values for 
FPF and TPF are given in Table 5. Finally, the most important results of ROC analysis, the binormal parameters a, b, and the 
area under the ROC curve A^ with their corresponding standard errors, 95% confidence intervals, and correlation of a and b 
are summarized for unpaired data in Table 6. Note that the 95% confidence intervals are symmetric for the binormal 
parameters a and b, but asymmetric for the area index A^. The corresponding results from the analysis as paired data follow 
directly afterwards. ROC curves are shown in Figure 12, FPF and TPF values in Table 7, and parameters a, b, and A^ together 
with their corresponding standard errors, 95% confidence intervals, and correlation of a and b in Table 8. 

ROC Curves for Data with and without Enhancement 

■With Enhancement 

-Without Enhancement 

0     ■ 0.5 1 

False Positive Fraction (FPF) 

Figure 11: ROC curves for data with Condition 1 (with enhancement) and Condition 2 (without enhancement) analyzed as 
unpaired data (independent analysis). 



FPF TPFl TPFl FPF TPFl TPF2 

0.005 0.4886 0.4989 0.1.1 0.8155 0.7282 
0.01 0.5521 0.5407 0.14 0.8232 0.7346 
0.02 0.6199 0,5859 0.15 0.8304 0.7406 
0.03 0.6612 0.614 0.2 0.86 0.7665 
0.04 0.6911 0.6347 0.25 0.8825 0.7874 
0.05 0.7145 0.6514 0.3 0.9003 0.8053 
0.06 0.7338 0.6653 0.4 0.9274 0.8352 
0.07 0.7501 0.6773 0.5 0.9472 0.8602 
0.08 0.7642 0.6879 0.6 0.9625 0.8825 
0.09 0.7767 0.6974 0.7 0.9746 0.9035 
0.1 0.7878 0.7061 0.8 0.9845 0.9244 

0.11 0.7979 0.714 0,9 0.9926 0.9475 
0.12 0.8071 0.7213 0.95 0,9962 0.9619 

Table 5: Values for felse-positive fractions (FPF) and true-positive fractions (TPF) for Condition 1 (with enhancement, TPF 1) and 
Condition 2 (without enhancement, TPF 2) analyzed as unpaired data (independent analysis). 
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Binormal 

Parameter a 
Binormal 

Parameter b 
Area under ROC 

Curve Aj 
Binormal 

Parameter a 
Binormal 

Parameter b 
Area under ROC 

Curve .Aj 
1.6183 0.6393 0.9136 1.0813 0,4208 0,8405 

gStandird Error a Standard Errdr b Standard Error A^ Standard Error a Standard Error b Standard Errolr^ 
0.3162 0.2093 0.0325 0.2329 0,1307 0,0475 

95% Confidence 
Interval for a 

95% Confidence 
Interval for b 

95% Confidence 
Interval for A^ 

95% Confidence 
Interval for a 

95% Confidence 
Interval for b 

95% Confidence 
Interval for A^ 

(0.9986,2,2381) (0.2291,1.0495) (0.8312,0.9615) (0.6247,1.5379) (0,1647,0,6770) (0.7301,0.9162) 

i;Correlation(a,1>) Corrclatidn(a,lJ) 
0.6544 0,4989 

Table 6: Binoimal parameters a, b, area under ROC curve J4J with their corresponding standard errors, 95% confidence intervals, 
and corre!ation(a, b) for Condition 1 (with enhancement) and Condition 2 (without enhancement) analyzed as unpaired 
data (independent analysis). 



ROC Curves for Data 

-♦—With Enhancement 

-Without Enhancement 
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Figure 12: ROC curves for data with Condition 1 (with enhancement) and Condition 2 (without enhancement) analyzed as paired 
data (correlated analysis). 

FPF TPFl TPF2 FPF TPFl TPF2 

0.005 0.494 0.5036 0.13 0.8155 0.7304 
0.01 0.5565 0.5451 0.14 0.8232 0.7367 
0.02 0.6232 0.5898 0.15 0.8303 0.7426 
0.03 0.6638 0.6176 0.2 0.8595 0.7682 
0.04 0.6932 0.6381 0.25 0.8817 0.7889 
0.05 0.7162 0.6545 0.3 0.8994 0.8066 
0.06 0.7351 0.6683 0.4 0.9263 0.8361 
0.07 0.7512 0.6801 0.5 0.9461 0.8608 
0.08 0.7651 0.6906 0.6 0.9614 0.8829 
0.09 0.7774 0.7 0.7 0.9737 0.9036 
0.1 0.7883 0.7086 0.8 0.9838 0.9244 

0.11 0.7982 0.7164 0.9 0.9922 0.9472 
0.12 0.8073 0.7236 0.95 0.9959 0.9617 

Table 7: Values for false-positive fractions (FPF) and true-positive fractions (TPF) for Condition 1 (with enhancement, TPF 1) and 
Condition 2 (without enhancement, TPF 2) analyzed as paired data (correlated analysis). 



Binormal 
Fflrameter a 

Binonnal 
Parameter b 

Area under ROC 
Curve A^ 

Binonnal 
Parameter a 

Binonnal 
Parameter b 

Area under ROC 
Carve A, 

1.6084 0.6302 0.9132 1.0839 0.4172 0.8414 

Standard Error a Standard Error b Standard Error A. Standard Error a Standard Error b Standard Error 
A, 

0.3137 0.2072 0.0327 0.233 0.1302 0.0474 

95% Confidence 
Interval for a 

95% Confidence 
Interval flir b   f 

95% Confidence 
Interval for A, 

95% Confidence 
Interval for a 

95% Confidence 
Interval forb 

95% Confidence 
Interval for A, 

(0.9936,2.2232) (0.2240.1.0363) (0.8304,0.9613) (0.6272,1.5407)) (0.1620,0.6724) (0.7311.0.9169) 

I •iCorrclaMoii(a; b) ijitffnilitiiBii(a,-B) 
0.6506 0.4995 

Correlation of Aj for Condition 1 and Ai for Condition 2:-0.0922 
Table 8: Binonnal parameters a, b, area under ROC curve A^ with their corresponding standard erron, 95% confidence intervals, 

and correlatlon(a, b) for Condition 1 (with enhancement) and Condition 2 (without enhancement) analyzed as paired data 
(correlated analysis). 

4.6.    Discussion 
As seen fiom the analysis for unpaired data, the value for the area under flie ROC curve A^ was by 8.7% larger for Condition 
1 (with enhancement) than it w^ for Condition 2 (without enhancement). In all cases the standard error for J^ was between 
0.03 and 0.05, which w^ rather small. Though the 95% confidence intervals forAi overlapped, there was a clear tendency 
that diagnostic performance improved with enhancement in comparison with diagnosis without enhancement. All ROC 
curves lay high in the unit square of FPF and TPF, which corresponded to acciumte diagnostic performances in general, but 
the curve for (Condition 1 was positioned slightly higher (see Figure 11). 
Similar results were generally obtained for the analysis as paired data. The increase in A^ for Condition 1 with respect to 
Condition 2 was 8.5 %, but there was an overlap of the 95% confidence intervals for A^ as well. The ROC curve for 
Clondition 1 was also positioned slightly higher than the one for Condition 2 (see Figure 12). Values for a, b, and A^ were 
very similar for both types of analysis. Hence, the same tendency of improved diagnostic performance with enhancement 
compared to diagnosis without ewAonce/nenf can be inferred. 
The observed increase of the summary index A^ within statistical errore and the higher position of the ROC curve for 
diagnosis with enhancement encourage us to fiirther pursue the application of enhancement protocols for mammographic 
screening. We are aware of the fact that there always are inherent sources of variability in the index A^, such m a "case- 
sample" component due to random variations in the difficulty of the c^es included in an ROC experiment, a "between- 
reader" component due to random variations in the skills of the observers participating in the experiment, and a "within- 
reader" component associated with each reader's inability to reproduce her/his diagnosis of every case on repeated readings 
[16]. In addition, we were not able to analyze the data for each radiologist separately due to data degeneracy as mentioned 
djove. The latter has diminished the statistical significance of our results obtained from the analysis of all data combined, 
since not all samples were completely independent. 
Hence, for fiiture ROC studies we plan to increase the number of c^es to avoid degenerate datasets for the analysis and to 
increase the statistical power of the experiment. 

Aside fiom statistical considerations and the cautious interpretation of the results of this study we know that our prototype 
test bed software tool can be fiirther optimized. To improve multi-scale contr^t enhancement the idea is to develop feature 
specific enhancement protocols with different bases and Msociated non-linear functions for each distinct mammographic 
feature, such as microcalcifications, masses, and spicular lesions. The enhancement protocol used for this experiment, dyadic 
spline wavelets with non-lmear sigmoidal fimction, mm suggested to work best for microcalcifications according to our 
previous work with multi-scale expansions [2], [25]. The results of this first ROC experiment seem to confirm our 
expectations. 



5.   CONCLUSIONS AND FUTURE WORK 
We have reported on the successful completion of the first receiver operating characteristics (ROC) study to evaluate the 
benefits of contrast enhancement via overcomplete multi-scale expansions of mammograms. The study was carried out in 
collaboration with radiologists at the Breast Imaging Center in Columbia-Presbyterian Medical Center and the Biomedical 
Imaging Laboratory of Columbia University. 
In continuation of our previous work in digital mammography, an enhancement protocol using a dyadic spline wavelet as the 
basis for multi-scale expansion and an associated non-linear sigmoidal enhancement function was designed. Suspicious areas 
(ROIs) of digitized mammograms were decomposed onto a multi-scale basis to obtain coefficients at distinct subbands. 
Coefficients were modified by applying a non-linear sigmoidal function. Two parameters could be adjusted to change the 
nature of enhancement. Image reconstruction from modified coefficients occurred in nearly real time through an interactive 
interface running on a high-resolution digital mammography workstation. To visualize raw data of digitized mammograms at 
the highest possible contrast and spatial resolutions, 16-Bit BARCO/Metheus framebuffers together with a dual headed high- 
resolution MegaScan grayscale monitor were utilized in hardware. We incorporated specialized software function calls to 
directly access the video framebuffer for fast/smooth image display and update. 
To quantify the performance of our multi-scale based processing technique in terms of overall sensitivity and specificity, an 
ROC study was designed and conducted with three radiologists from Columbia-Presbyterian Medical Center specialized in 
mammography. Conventional ROC curves were generated and significant statistical parameters determined. The area under 
the ROC curve A^ was used as a summary index to quantify overall specificity and sensitivity of the two diagnostic systems 
[16]. Unfortunately, it was not possible to analyze datasets for each of three mammographers separately due to data 
degeneracy. Nevertheless, analyzing all the data together yielded a slight increase (8.7%) in the area A^ for diagnosis with 
enhancement compared to diagnosis without. Despite the limited statistical significance of this result, it encourages us to 
further investigate the application of multi-scale methods for contrast enhancement of mammograms. More extensive ROC 
studies with a larger number of cases are planned to further evaluate the benefits of such processing techniques. 
Ancillary to statistical results, we received very positive feedback from the participating radiologists, who expressed great 
interest in using the interactive display tool and acknowledged a marked improvement in image quality, when enhancement 
was applied. 
The current enhancement protocol works best for the detection/enhancement of microcalcifications. Future directions of work 
include the expansion of the choice of enhancement protocols to a menu of feature specific enhancement algorithms tailored 
for each mammographic feature, such as microcalcifications, masses, and spicular lesions, e.g. the application of brushlet 
functions [47], [48] to mammograms with spicular lesions. In addition, the investigation of a range of optimal enhancement 
parameters and the optimization of our interface software tool comprise further projects. Our "dream" is to present a clinical 
interface, where specific enhancement protocols can be selected by a physician by only "pushing a button on the screen". We 
envision that through such a clinical interface the diagnostic performance of radiologists in screening digital mammograms 
could be substantially improved, both in terms of cost and quality. 
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Visualization of mammograms via fusion of enhanced features 
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Image enhancement in mammography is typically concerned with either general visibility 
of all features or conspicuity of a specific sign of malignancy. We describe a synthesis of 
the two approaches through fusion of locally enhanced microcalcifications, circumscribed 
masses, and stellate lesions. Both local processing and image fusion are performed within 
a single wavelet transform framework which contributes to the computational efficiency 
of the method. The algorithm not only allows for efficient combination of specific fea- 
tures of importance, but also provides a flexible framework for incorporation of distinct 
enhancement methods and their independent optimization. 

Mammography, contrast enhancement, image fusion, wavelet transform. 

1. INTRODUCTION 

In general, mammographic image enhancement methods target either visualization of 
all features in an image [1, 2, 3, 4] or visibility of specific features of importance such as 
microcalcifications [5]. 

Methods from the first category are not optimized for a specific type of cancer, and 
are often developed for a framework more general than mammography alone. The second 
category approaches can be quite successful in their area of specialization; however, in 
order to process mammograms for presence of distinct features, independent application 
of different algorithms could result in both larger number of images to be interpreted by 
a radiologist and increased computational complexity. 

Here, we present an approach which overcomes these shortcomings and problematic 
limitations via synthesis of the two paradigms by means of image fusion. The algorithm 
consists of two major steps: (1) wavelet coefficients are modified distinctly for each type 
of malignancy; (2) the obtained multiple sets of wavelet coefficients are fused into a single 

This work was supported by the U.S. Army Medical Research and Materiel Command under 
DAMD17-96-1-6093 and DAMD17-93-J-3003, and by the Whitaker Foundation. 



set from which a reconstruction is computed. The scheme allows efficient deployment of 
an enhancement strategy appropriate for clinical screening protocols: an enhancement 
algorithm is first developed for each specific type of feature independently, and the results 
are then combined using an appropriate fusion strategy. 

2. WAVELET TRANSFORM 

Wavelet based methods are particularly well suited for processing of mammograms since 
mammographic features greatly vary in shape and size. Commonly used orthogonal and 
biorthogonal wavelet transforms; however, may not be the best tool for mammographic 
image enhancement because their lack of translation invariance can lead to artifacts possi- 
bly affecting a radiologist's interpretation. IVanslation-invariant but overcomplete wavelet 
representations avoid artifacts and have been successMly used for processing of mammo- 
grams [1, 2, 5]. 

Rotation invariance is another desirable property of wavelet decompositions. The 
concept of steerability [6] has been utilized for construction of wavelet transforms enabling 
rotation-invariant processing of mammograms [3], Our scheme is built around a multiscale 
spline derivative-based transform which, in addition to being translation-invariant and 
approximately steerable, is also suitable for non-linear methods of enhancement. 

We use x-y separable wavelets 

^(^'t/) = —T-rf—Pp+diVh dx° (1) 

where fip{x) denotes a central B-spline of order p, and limit ourselves to first and second 
derivatives d € {1,2}. Figure 1 shows wavelets with p=3. 

A rotation of wavelet ^(a;, y) by angle ^ can be expressed as 

il,%x,y) 

where n= (c(M0,sin^) = (na:,%). The terms —^ffg-t-|W '^^p+f^^) represent basis functions 
needed to approximately steer wavelet ip{x,y). A dyadic wavelet transform using these 
basis functions can be implemented as a filter bank consisting of one-dimensional filters 
only [7]. : 

3. ENHANCEMENT OP MAMMOGRAPHIC FEATURES 

3.1. Microcalciflcations 
Microcalcifications appear on mammograms in approximately half of breast cancer 

cases. The assessment of shape, number, and distribution of microcalcifications is impor- 
tant for a radiologist to reach diagnosis. Microcalcifications are smaller than 1 mm in size 
and can be difficult to locate when they are superimposed on dense breast tissue. 

Several techniques have been developed to improve the visibility of microcalcifications 
[5, 8, 9].  The approach devised by Strickland and Hahn [5] is particularly well suited 
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Figure 1. Spline derivatives in the a;-axis direction, (a) Wavelet equal to the first 
derivative of a quartic spline, (b) Wavelet equal to the second derivative of a quintic 
spline. 

for our framework: they used an undecimated wavelet transform to approximate second 
derivatives of a Gaussian probability density function for a multiscale matched filtering 
for presence of microcalcifications. 

Strickland and Hahn based their method on the observation that the average mi- 
crocalcification can be modeled by a circularly symmetric Gaussian function. We take 
advantage of this fact to model microcalcifications by central B-splines. Using B-spline 
approximations of a Gaussian function, the assumption that a Gaussian object is visible 
approximately over ±cr pixels [5], and the fact that mammograms in the University of 
Florida database were digitized at 116/xm resolution, four levels of the transform described 
in Section 2 with, for example, p = 3 are needed to encompass different sizes of microcal- 
cifications. The wavelet decomposition including voices at scales 3 and 6 (corresponding 
to Strickland and Hahn's octaves "2.5" and "3.5") was obtained from relations between 
central B-splines at integer scales [10]. 

The wavelet decomposition enables approximations both to the second derivatives of 
Gaussian along x and y directions and to Laplacian of Gaussian across distinct scales 
employed by Strickland and Hahn. We proceed in a similar fashion: the two outputs 
per scale are thresholded independently, all binary results are then combined, a circular 
region centered at detected pixel locations is next multiplied by a gain, and, finally, the 
modified transform coefficients are used for image fusion. 

3.2. Circumscribed Masses 
Almost half of missed cancers appear on mammograms as masses. Perception is a problem 
particularly for patients with dense fibroglandular patterns. The detection of masses can 
be especially difficult because of their small size and subtle contrast compared with normal 
breast structures. 



Fan and Laine [2] developed a discrete dyadic wavelet transform based algorithm 
suitable for enhancement of masses. They constructed an approximation to Laplacian of 
Gaussian across dyadic scales for an isotropic input to a piecewise linear enhancement 
fiinction. 

An approximation to a Laplacian of Gaussian across dyadic scales is easy to obtain 
using multiscale spline derivatives from Section 2: basis functions —^tf ff with 
d = 2 and i € {1,2} approximate the second derivative of a Gaussian function along 
directions of x and y axis. The appropriate transform coefficient at each dyadic scales are 
then added and their sum input to the piecewise linear function [2] 

' X - {K-1)T   ifx < -T 
Cix) = I Kx if |a;| < T s 

[ a: + (^-l)r   ifar > T 

used at each level m+1 of the transform separately. Due to the expected size of masses, 
levels greater than 4 are enhanced more aggressively. 

The multiplicative factor obtained as the ratio between the output and input of the 
enhancement function is next applied to the original wavelet coefficients before fusion and 
the associated inverse wavelet transform are carried out. 

3.3. Stellate Lesions 
It is important for radiologists to identify stellate lesions since their presence is a serious 
indicator of malignancy. Stellate lesions vary in size and subtlety and, in addition, do not 
have a clear boundary, making them difficult to detect. 

In the development of our algorithm, we utilized an observation made by Kegelmeyer 
et at about the distortion of edge orientation distribution induced by a stellate lesion [11], 
Normal mammograms show a roughly radial pattern with structure radiating from the 
nipple to the chest wall. A stellate lesion not only changes this pattern, but also creates 
another center from which rays radiate. 

The wavelet transform from Section 2 allows directional analysis using approximations 
to both irst and second steerable derivatives of a Gaussian. A multiscale derivative-pair 
quadratic feature detector was computed by finding the maximum of the local oriented 
energy with respect to angle 9, 

^n^ix^v) = ^iWll,.six,y)r + {W2lr.six,y)f, (2) 

where Wl|ms(a;,y) and W22ms{xjy) denote wavelet decompositions using first (Equation 
(1) with d = 1) and second (Equation (1) with d = 2) derivative wavelet, respectively, 
steered to angle 0. The angle that maximizes the local oriented energy (2) represents 
orientation at pixel location (a;, y). 

Similar to the method from Section 3.1, processing is carried out within windows of 
scale dependent size: 1-norm of differences between the local and average orientations 
was computed in the window and used as a measure of orientation nonuniformity. Soft 
thresholding as a fiinction of the orientation nonuniformity measure was next applied to 
the transform coefficients at each dyadic scale independently. The altered coefficients are 
then included for fusion and reconstruction. 



(a) (b) 

Figure 2. (a) The cranio-caudal view of the left breast, (b) Enhanced image improves 
visualization of the borders of the mass. 

4. FUSION OF ENHANCED FEATURES 

After coefficients are processed for enhancement of distinct mammographic features, the 
corresponding coefficients are combined according to a fusion rule into a new set of trans- 
form coefficients from which the fused result is reconstructed. As a fusion rule, the max- 
imum oriented energy criterion was chosen: at each position and scale of the transform, 
the coefficient with greatest local energy was selected [12]. 

It is also possible to put distinct weights on selected features, and exclude other 
features from the final result. 

Figure 2 shows the original mammogram and the processed image with improved con- 
trast between the fat and glandular tissue. 
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5. CONCLUSION 

The presented method incorporates a variety of properties of mammographic image en- 
hancement techniques tailored to specific signs of malignancy into a unified computa- 
tional framework. A multiscale spline derivative-based transform proved flexible enough 
for implicit enhancement of individual types of mammographic features and thus enabled 
processing within a single wavelet transform decomposition. In addition to its efliciency, 
the algorithm is well suited for further refinements; optimizations can be performed for 
each type of malignancy alone, and separately for the fusion strategy. 

Our preliminary experiments imply that an enhancement via fusion approach can pro- 
vide more obvious clues for radiologists. Further clinical tests are planned to verify that 
the versatility of this paradigm can provide a better viewing environment for a more re- 
liable interpretation in screening mammography. 
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